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We study a composite quantum quench of the energy gap and the interactions in the interacting ¢* model
using a self-consistent approximation. First we review results for free theories where a quantum quench of the
energy gap or mass leads for long times to stationary behavior with thermal characteristics. An exception to
this rule is the 2d case with zero mass after the quench. In the composite quench, however, we find that the
effect of the interactions in our approximation is simply to effectively change the value of the mass. This means
on the one hand that the interacting model also exhibits the same stationary behavior and on the other hand that

this is now true even for the massless 2d case.
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I. INTRODUCTION

An area that has been gaining increasing interest over the
last years is that of out-of-equilibrium quantum physics. An
example of particular simplicity is that of quantum quenches
in which some of the parameters of the Hamiltonian of an
isolated quantum system are changed instantaneously. Then
one practically has to study the time evolution of a trial wave
function, which is typically the ground state of the Hamil-
tonian before the quench, under the influence of the Hamil-
tonian after the quench. Although one expects a periodic col-
lapse and revival of the initial state, in practice this period
diverges rapidly with the system size and for large systems
local observables may exhibit stationary behavior at long
times, even though the global wave function itself may never
become such. This has been shown to be the case in many
different settings.'~16

An obvious interesting question is whether this stationary
behavior is thermal as one may reasonably expect. It turns
out that in many integrable systems the stationary behavior is
described by a statistical distribution which is similar to but
not exactly thermal.'=3>!1%15 More precisely it is a general-
ized Gibbs ensemble, subject to the constraints imposed by
the integrals of motion. It was then conjectured that nonin-
tegrability is responsible for the exact thermalization of a
system.!” To what extend this is true is, however, still under
investigation, since theoretical arguments that support this
conjecture are based on semiclassical conjectures'® while nu-
merical studies'*!71922 lead to rather controversial results:
some of them!'*!%20 reveal nonthermal behavior even for
nonintegrable systems while others'’?! are in good agree-
ment with the thermal predictions and attribute the previous
disagreement to finite-size effects. There are some analytical
studies in lattice models too:*?3 the first® refers to the Bose-
Hubbard model but after the quench the system evolves un-
der the free Hamiltonian of the superfluid regime. In the
second” dynamical mean-field theory (DMFT) applied to
the nonintegrable Falicov-Kimball model shows nonthermal
features. On the other hand, an interaction quench in the
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Fermi-Hubbard model is possible to lead to thermalization,
as shown using two different analytical®* and numerical
DMEFT (Ref. 25) approximations.

In the present work we will study quantum quenches em-
ploying a field theoretic approach, which is supposed to cap-
ture their essential general characteristics. We consider sys-
tems described by a relativistic dispersion relation with some
energy gap (or mass) and a maximum group velocity of ex-
citations. Then for free systems, a quantum quench of the
energy gap leads to stationary behavior and a momentum-
dependent effective temperature can be defined.*> This is
true for quite general conditions: the energy gap after the
quench must be nonzero in 1d and 2d while in 3d the result
holds even if it is zero. Furthermore a 1d gapless system can
only be interacting and it turns out that it exhibits similar
behavior too.*> It should be emphasized that the notion of
effective thermalization used throughout the present and
some related earlier work® refers to the thermal-like station-
ary behavior that fits to the generalized Gibbs ensemble de-
scription rather than the standard thermal theory. This is
manifest in the fact that each momentum mode corresponds
to a different effective temperature, since in the absence of
interactions each mode evolves independently from the oth-
ers. This suggests that in interacting systems the energy ex-
change due to collisions between different momentum modes
would result in a mixing of their effective temperatures.
However if the interaction is such that the system is still
integrable then there will be some other decomposition into
independent modes (quasiparticles) and we expect that the
system still exhibits stationary behavior with a different ef-
fective temperature for each of these modes. Therefore it is
only when the interaction makes the system nonintegrable
that thermalization to a unique common temperature is still a
possibility.

The simplest interacting field theory is the ¢* model. We
consider a simultaneous quench of the mass from mg to m
and of the coupling constant from Ay to A. In order to study
the evolution of the system we need to use an approximation
scheme and the simplest one is the Hartree-Fock or self-
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consistent approximation. This can be applied in a number of
different but equivalent ways. In perturbation theory it con-
sists in ignoring all skeleton diagrams from which the dia-
grammatic expansions of correlation functions are con-
structed, except for the simplest one, i.e., the loop diagram.
This turns out to be the same as approximating the system’s
state by Gaussian wave functions or substituting the quartic
interaction term in the Hamiltonian by a quadratic one with a
self-consistent coefficient. Notice, however, that in this
simple approximation, collisions between particles of differ-
ent momenta are neglected and this makes our approach in-
capable of answering the previous question about the relation
between nonintegrability and exact thermalization. Indeed,
although the ¢* model is nonintegrable, the Hartree-Fock
approximation becomes exact only in the large-N limit of the
linear o model, i.e., the generalization of the (/)4 model to an
N-component field, which becomes integrable in this limit.
Thus our approach provides the integrable counterpart of a
nonintegrable model that best approximates it. It is, however,
the necessary first step toward understanding the effect of
quantum quenches in interacting systems and should be ex-
pected to reveal some of their general features.

There is a significant number of publications that use the
same method to study other closely related out-of-
equilibrium problems, partially due to applications to cos-
mology. Cooper and Mottola?® made a detailed presentation
of the method for the evolution of a general trial wave func-
tion and Boyanovsky et al.?’-%° studied the special case of a
quench from the disordered to the ordered phase at large
temperature and in 3d. Also Wetterich co-workers*3! have
studied the time evolution of out-of-equilibrium initial en-
sembles using a different method based on the numerical
computation of the time-dependent effective action. Recently
a remarkable numerical study based on the same method and
including next-to-leading order effects in the large-N expan-
sion has shown that an initial pure state evolves so that the
reduced density matrix indeed thermalizes at large times.

Using our approximation we find that the two-point cor-
relation function long after the quench is of the same form as
the free correlation function but with a different mass that
has to be determined self-consistently. This means that noth-
ing really changes in terms of the relaxation of the system:
once again it becomes stationary and a momentum-
dependent effective temperature can be defined, the only dif-
ference being that m will be replaced by an effective mass m”*
which depends also on the coupling constant \. The self-
consistency equation for m* has always a real solution larger
or equal to m. In the critical case m=0, we find that in 1d m*
is also zero, but in 2d it becomes finite. This leads to the
important conclusion that in 2d, after a quench to zero mass
which according to the above discussion would not lead to
relaxation if the system were free, now due to the presence of
the interaction, it acquires a nonzero effective mass which
allows it to relax. Furthermore, by studying the time evolu-
tion of the effective mass we find that if my>m and \ is
sufficiently large then right after the quench the system is
effectively set into an unstable state although it soon recov-
ers its stability.

In the first part of this paper we focus on free systems
which have been partially discussed earlier.*> Here we
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present an elegant simplified derivation of the quench propa-
gator, develop an exact imaginary-time formulation based on
an earlier invented mapping to a slab geometry and define an
average measure of the effective temperature first introduced
in recent work.?> These constitute a useful toolkit for many
applications and extensions. For completeness we briefly re-
port earlier results regarding 1d integrable systems with criti-
cal evolution. In the second part we study the composite
quench in the ¢* model in the self-consistent approximation.
This part is split into two sections: in the first we follow a
heuristic approach based on perturbation theory and find an
ansatz for the correlation function and in the second we start
with the equations of motion and investigate the time evolu-
tion to verify the results obtained from our ansatz.

II. SIMPLE HARMONIC OSCILLATOR

The simplest problem of a quantum quench one can start
with is that of a simple harmonic oscillator whose frequency
is quenched from w, to w. The Hamiltonian before the
quench is

1 1
H0=5772+5w(2)¢>2 (1)
while after the quench it is

Lo e
H= 5 ™+ S . (2)
The initial state is the ground state |W) of H,,.

From a physical point of view, what happens is that [¥),
as a trial state different from the ground state |0) of H, con-
tains, compared to that, an energy excess which is distributed
to the excitation levels of H. After the quench the evolution
of the wave function in the Schrodinger picture is given by

[W(0) = e ™Wo) = 2 e D )W), (3)

where |n) is an arbitrary eigenstate of H.

It is trivial to observe that the evolution is periodic since
after a period T=2m/w the system returns back to the initial
state, up to an irrelevant minus sign. This is a special case of
quantum recurrence.>* In fact the wave function will exhibit
periodicity or quasiperiodicity (i.e., it will return arbitrarily
close to the initial state after sufficiently large time) in any
system with discrete energy eigenvalues. Systems with finite
degrees of freedom always have such discrete spectra, while
in the thermodynamic limit the spectrum becomes, in gen-
eral, continuous and quantum recurrence may be lost. In
practice even for finite but large systems, the corresponding
period is usually so large that this periodicity is irrelevant.

Propagator

We are also interested in the correlation function of the
field operator ¢ at different times, i.e., the propagator
(Wo| (1)) 1)} W)= C,(1,,1,), where T denotes time or-
dering. The time evolution of x in the Heisenberg picture is
given by the equations of motion
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b+ w’$p=0 (4)
which can be solved easily

sin wt

@(1) = p(0)cos wt + 7(0) (5)

We therefore have

(Wold(t,) (1) | W) = <‘I’o|¢2(0)|q’0>005 Wl COS wi,
(W PO sin wtl sin wt,

+{(Wo|p(0)7(0) + 7(0) (0)

sin w(t; + 1,) ~ sin w(t; — 1))

X[
| o 2w 2w

E}

(6)

where the canonical commutation relation [(0),m(0)]=i
has been taken into account in order to simplify the last term.
All terms are symmetric under the interchange ¢, <« t, apart
from the last one which is antisymmetric. Thus time ordering
amounts to substituting (¢, —1,) in the last term by its abso-
lute value.

It is now clear that the problem reduces to the calculation
of the initial expectation values of ¢?(0), 72(0), and
@(0)7(0)+ 7(0) p(0). From the initial condition that the sys-
tem lies in the ground state of H, we easily find

FJ SO = 5 (7a)
(ol ()W) = L, (70)
(Ll $O)7(0) + OO =0  (Tc)

and substituting into Eq. (6) we obtain

(0 — wp)? o —
Cq(tl,tz) = TOCOS U)(t] - t2) + B OCOS U)(t] + t2)
o 0
1 .
+ Ee_'wlrl_&l. (8)

Notice that we have separated the Feynman propagator
e~ielni=nl/2 4 which, as expected, is the only term that sur-
vives if w=uw, i.e., if there is no quench at all. Also notice
that the only term that breaks time invariance is the second
one.

III. LINEARLY COUPLED OSCILLATORS (FREE FIELDS)

Let us now move on to study a system of linearly coupled
harmonic oscillators or equivalently a free-field theory. In
general such a system is described by a quadratic Hamil-
tonian of the form
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H——Eﬂ}(r)+ EK(r— M) = (P (9)

rr

which can be easily diagonalized in momentum space where
it takes the form

1
H= E 7Tk77k+2wk¢k¢k (10)

We will assume a relativistic dispersion relation
wi: k% + m?ct (11)

with energy gap (or mass, in the language of quantum field
theory) m and speed of sound c. This can also describe suc-
cessfully nonrelativistic systems with the same energy gap m
and maximum velocity of excitations c.

The quantum quench that we will consider consists in an
instantaneous change in the mass from m, to m. For brevity
we can set c=1. An investigation of a quench of the speed of
sound ¢ is done elsewhere.’® As earlier, we assume that be-
fore the quench at r=0 the system lies in the ground state of
the initial Hamiltonian |W). In addition the system is kept
isolated from the environment before and after the quench.

In order to study the time evolution, it is sufficient to find
the two-point correlation function, i.e., the propagator

(Wo| K plry,1) plra, )} Wo) = Cylt, 15,71 = 15)  (12)

since in a free theory all physical observables can be ob-
tained from this. From Eq. (10) we see that the system is
decomposed into a set of independent momentum modes
each of which evolves as a simple harmonic oscillator. Thus
the propagator is simply the Fourier transform with respect
. . a2 2
to k of expression (8) with wy,=Vk*+my and w;=Vk*+m

ddk ik-r .
Cq(tl’t2»r): (27T)de Cq(tl’tz’k)~ (13)

A. Properties of the propagator

Let us now study the physical properties of the equal time
propagator in real space. For simplicity we will mainly use
its asymptotic form for my>m and t,r>my !. This will be
called the deep-quench limit and should obviously exhibit all
characteristic features of a quantum quench since it is one of
the two most extreme possibilities for the relation between
the two masses. In this limit the propagator simplifies to

% . my
qu(r l‘) f(z )d zk-r4wi(1

—COS 2wy t). (14)

The massless (m=0) and massive (m # 0) cases are different
and should be investigated separately.

1. Massless case

In this case w,=|k| and after some algebra using Fourier
transforms of common functions, we obtain the following
exact results: (1) d=1
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U (1) 0 if =2t (15)
L) = .
dg \" my(2t—r)/8 if r<2t.
(2) d=2
O lf r> 2t9
Cal(r1) =
g (1) < Jlog[(2r+ a2 = )] if r <.
a
(16)
(3) d=3
0 if r>2t
(3d) '
e 17
Ciq (r,1) {m0/1677r if r<<2t. (17

In all dimensions we distinguish between two space-time
regions in which the behavior of the propagator is qualita-
tively different: for r>2r it is always zero, unlike for r
< 2t. This means that the correlations between two points at
distance r remain unchanged until 7=r/2. Also notice that in
3d the propagator is time independent for r<<2¢.

2. Massive case

By evaluating the integral Eq. (14) we notice that, as be-
fore, we have to distinguish between two space-time regions
in which the behavior of the propagator is qualitatively dif-
ferent. If »>2¢ then we can close the integration contour in
the upper half of the complex k plane and since there is no
pole the integral is zero. If on the other hand r<<2t then for
the time-independent part of the integrand we close the inte-
gration contour in the upper-half plane but for the time-
dependent part we have to rotate it by 90° instead. Each part
has single poles at k= *im and the outcome is nontrivial.
Exact results cannot be found and we have to employ
asymptotic methods for large » and ¢. In particular using the
stationary-phase method we find that for fixed r and large ¢
the time-dependent part of the integral tends to zero like
%2 cos 2mt. Also the rest decreases for large r like
e r(d—l)/2.

We thus conclude that the propagator changes sharply as
we cross the lines r=r/2. Before this time there are no cor-
relations between two distant points, while afterwards the
two points become correlated. This feature, which is a direct
consequence of the causality principle, is called the horizon
effect. Figure 1 illustrates the main features of the massive
propagator in 1d.

Another particularly important conclusion is that if m
# 0 then for fixed distance the propagator becomes station-
ary for large times. The same is true for m=0 in 3d, but not
in 1d or 2d. In addition this result is robust and does not rely
on the deep-quench approximation. Indeed if we use the full
expression of C,(t;k) [Eq. (8)] for m=0 and 3d we find that
the time dependence decays exponentially. The 1d case is
more complex and requires special treatment. We will talk
about this in Sec. IV.

B. Comparison with the slab propagator

We will now study a completely different problem which,
however, turns out to be an imaginary-time formulation of a
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FIG. 1. (Color online) Top: space-time plot of the deep-quench
propagator C,,(r,t) in 1d and for m=1, as obtained by numerical
integration of Eq. (14). The horizon effect is clearly demonstrated.
Outside the horizon the value is exactly zero. Bottom: time depen-
dence of Cyy(r,1) (solid line) at fixed distance r=r;=2, denoted by
the vertical horizontal line in the above figure. The dashed lines
give the large time asymptotic expressions. Notice the decaying
oscillations ~¢~/? cos 2mt around the stationary value ~e™" (hori-
zontal line).

quantum quench. We consider a euclidean free-field theory
defined on a (d+1)-dimensional slab of thickness L with
Dirichlet boundary conditions, that is the two-point correla-
tion function or Green’s function vanishes when one of the
points are on the boundaries of the slab 7=-L/2 and 7=
+L/2, where 7 is the transverse coordinate. The Green’s
function G(r,, 7,7, 7,) for this problem can be found using
the method of images as follows: to reproduce the boundary
conditions we put an infinite set of alternating positive and
negative “charges” at the reflections of the “source” on the
boundaries [Fig. 2(a)]. Then G(r;, 7,75, 7,) is the superpo-
sition of (euclidean) Feynman propagators between (r,, 7,)
and each of the images of the source (r|, ;). Since the prob-
lem is translationally invariant in the d longitudinal direc-
tions, in the mixed (k,7) representation we find that
Gy (1, mp5k) is

L E e—wk[|71—72|+2nL] + E e—wk[—\rl—rz|+2nL]

Zwk n=0 n=1

_ 2 g_“’k[Tl+72+(2”+1)L] _ E e—wk[—’rl—rz+(2n—1)L] ) (18)
n=0 n=1

This is a geometric series and the result is
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FIG. 2. Images required for the slab with (a) Dirichlet or (b)
periodic boundary conditions.

el 4 grorln=nl=2L) _ pmeil cosh (1) + 1)

2w(1 — e72iL)

cosh w (1 = 1) e“ cosh wy(7 + 7)

wk(eZka _ 1) wk(eZka _ 1)

+ Le—wk\Tl—Tz\_ (19)
Za)k
By analytically continuing to real times 7— it we find
cos wylt; — 1) e cos wy(t) + 1)
Gty 155k) = 2ayL - 2ayl
(l)k(e k= — l) a)k(e k™ — 1)
n L el (20)
2(1)k

If we now compare the slab propagator in real time Eq. (20)
with the quench propagator Eq. (8) we notice that these are
exactly equal if and only if

(wp—w)* 1 (212)
4(1)k(1)()k B ez“’kL -1 ’
wy - wp et 21b
4wkw0k - ezka— 1 ' ( )

Remarkably, the above two conditions are consistent and the
solution is

wk/(,()()k if Wy < W0

tanh(w;L/2) = { (22)

ka/wk if Wy > W -
Notice that if we solve with respect to L, the answer is a
function of k.

Thus the problem of a quantum quench can be equiva-
lently formulated as a euclidean theory on a slab with
momentum-dependent thickness. The initial conditions in
real time are translated into boundary conditions on the slab.
In the deep-quench limit my— cc the condition becomes L
~2/m, independent of k and therefore the analogy between
the quantum quench and the slab is asymptotically exact. The
reason is that Dirichlet boundary conditions correspond to
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vanishing initial value of the quench propagator, which is
indeed the case for my— o, since C,(0,0;k)=1/2wp— 0.

It should be mentioned that our choice of Dirichlet bound-
ary conditions has nothing special: in fact it is only important
in the deep-quench limit. One can verify that the quench
propagator can be similarly identified with the Green’s func-
tion corresponding to the following general boundary condi-
tions (known as Robin or “impedance” boundary conditions
due to their application to electromagnetics):

8@51(7'1,7'2;/()

aésl(Tl,Tz;k) +b =0, (23)
on
where
a = wy, sinh(wy/wg;) — wo; cosh(wy/ wyy),
b= COSh(wk/w()k) - wok/wk Sinh(wk/w()k) . (24)

d/dn denotes the normal derivative at the boundary 7
==*L/2 and in this case L is chosen to be L=2/w,. Note
that for wy, > w, the latter condition reduces to Dirichlet
type. To intuitively understand the meaning of these bound-
ary conditions, we can use an analogy from electromagnet-
ics. There, Dirichlet boundary conditions correspond to com-
plete reflection by a perfect conductor, while Robin boundary
conditions correspond to partial reflection and refraction by
an imperfect conductor with a large refractive index.

The correspondence between a quantum quench and the
slab construction turns out to be valid, at least in the deep-
quench limit, even in interacting theories where an exact
solution may not be possible.’

C. Comparison with the thermal propagator

Let us now compare the above two propagators with the
thermal or Matsubara propagator, which describes a system
at thermal equilibrium at finite (inverse) temperature B. As is
well known, in imaginary time this corresponds to the
Green’s function in the geometry of a (d+1)-dimensional
cylinder of circumference 3, i.e., a slab of equal thickness
with periodic instead of Dirichlet boundary conditions.
Among other ways, this can also be derived using the
method of images. To reproduce the periodic boundary con-
ditions we now need to put only the positive images
[Fig. 2(b)] and the result is

1 cosh wy(m— 7
Gy, 703k) = 2_<e_‘”k71_72 + 2M>

o ePor— 1
(25)
or in real time, after the analytical continuation 7— it
1 ) cos wy(t; — 1)
)= — —lwk‘ll—tz‘ hiatidhad/aS0 W74
Gth(tl,t29k) 2wk<e +2 eﬁwk_ 1 . (26)

We observe that if we could ignore the (¢, +1,)-dependent
part then the slab propagator Gy(t;,t,;k) and the quench
propagator C,(t,,t,;k) would be the same as the thermal
propagator G,(t,,t,;k) with L=8/2. This can actually be
correct for the real space form of the quench propagator at
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TABLE 1. Asymptotic behavior of the quench integral f,(s) Eq. (31).

d Exact s=0 s=1 §—®

1 [2 log s+ (V1—s?/s)arccos s]/4 (m/25+2 log 5)/4 (s-1)%/6 (log s)/4

2 [2(s—1)—+s*—1 arccos(1/s)]/4 —(log s)/4 (s—=1)%/12 (1+7/4)s/2
3 [(1-52)/2—s2 log s—s\1—s? arccos s]/4 (1—rs)/8 (s—=1)%/12 (log 2-1/2)s%*/4

large times, as we have already seen in Sec. III A. Indeed
this is the case if m# 0 or m=0 and d=3.

As a conclusion, at large times the system tends to a state
with thermal-like correlation functions, which is what we
named effective thermalization. The effective temperature is
given, according to all the above, by the condition

wk/w()k if Wy < W0 »

tanh(ﬂeffwk/4) = { (27)

ka/wk if Wy > Wy -

Notice that the effective temperature is momentum depen-
dent, which could be expected since, as we already men-
tioned, in a free system each momentum mode evolves inde-
pendently from the others and there is no reason why they
should all thermalize to the same temperature. Yet in the
deep-quench limit the effective temperature becomes
momentum-independent B¢~ 4/my,.

It should be emphasized that the state itself is neither
thermal nor stationary: the density operator still exhibits os-
cillating behavior, for example. However, since in a free sys-
tem all local observables can be derived from the two-point
correlation function which does become stationary, the same
happens to all such observables as well. It is crucial that the
system is in the thermodynamic limit and the observables
under consideration are local since then an integration over
an infinite set of momenta is required and it is exactly this
interference of all independent momentum modes that leads
to thermalization. Such observables include those defined on
any finite subsystem A of the whole system, like the reduced
density operator of A.3 In this sense the complement of A
acts as a thermal bath with which A comes into thermal
equilibrium. This explains why the effective thermalization
that we consider does not contradict with the fact that in a
free or more generally integrable system, there is an infinite
set of conserved quantities that prevent the system from ther-
malizing as a whole. The subsystem A is not closed and there
are no such restrictions to prevent its thermalization.

D. Estimation of the effective temperature from the field
fluctuations

As we saw, the effective temperature in our free model is
different for each momentum mode. Since the low-
momentum modes are those that determine the large-distance
behavior, for most purposes B.s(k=0) is sufficient in order to
macroscopically describe the system. We can define,?* how-
ever, an estimate of the effective temperature that averages
over all momentum modes in a natural way, by comparing
the field fluctuations long after the quench {¢*(x=0,t— ))
with those of a system at thermal equilibrium. We can call

this average effective temperature and denote it as 3. Then 8
must satisfy

fddkCZ(k;m,m0)=fdde,h(k;m,B), (28)

where CZ stands for the stationary part of the quench propa-
gator. More explicitly

o 2 0
f kd—ldkw — f kd—ldk; (29)
0 4ogw; 0 w(eP—1)

from which we can find B as a function of m and m,. The
latter can be written in dimensionless form as

mi ' famimg) = m*' g ,(Bm)., (30)
where
£.45) J%kd_ldk(\'k2+1—Vk2+s2)2 31)
s)= ,
s I+ 1K +57)
and
g4(s) = f k*'dk — (32)
0 \,/kz + l(ex\“k2+1 _ 1)
In units of my, setting x=m/my and y=Bm, we have
w1 2 Fa2) (33)
galxy)

Tables I and II show the asymptotic behavior of the integrals
in several limits for the relation between the parameters and
when possible their exact form.

Figure 3 shows a plot of B as a function of m in units of
mg as obtained numerically from the above equation. Note
that for m=m,, i.e., no quench at all, the effective tempera-
ture 1/ is zero as it should be. Apparently in the deep-
quench limit the small-wavelength behavior dominates and
according to an earlier comment in Sec. III C we expect to

find ,é~m51 for any dimension. For small values of m/my,

TABLE II. Asymptotic behavior of the thermal integral g,(s)
Eq. (32).

d Exact s=0 §—®

1 (7r/2s)+(log 5)/2 e\l 2s
2 —log(1—e~%)/s —(log s)/s e’ls

3 (721652)[1-3s/ )] e/ 25732
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FIG. 3. (Color online) Effective temperature as a function of the

final mass Bmy=F,(m/m) in units of the initial mass my=1. Inset:
asymptotic behavior for small m. Notice the logarithmic corrections
in 2d.

the asymptotic expressions of f; and g, allow us to calculate

analytically the first-order corrections of 3 as a function of
m/my. In this way we find: (1) d=1

4 32log2m
— 4

B=——+ 2 (34)
Mg ™y
(2) d=2
- 4 3log2-2
) log(m/my)
(3) d=3
_ 1 — -
B=—[2m/\3 - w(2 — w/\N3)mimy+ -]
my
~ m51(3.6276 —0.584967m/my+ - ++). (36)

In 1d and 2d the k=0 momentum mode dominates so that

the first-order term is B=4/my. In 2d, however, the logarith-
mic corrections could render comparison with data difficult.
In 3d the contribution of nonzero but small kK modes causes a
small shift of the numerical factor from 4 to 2/V3
~3.6276.

IV. MASSLESS 1d THEORIES

In Sec. IIT A we saw that for d=1 and m=0 the propaga-
tor does not become stationary. However the situation is dif-
ferent when we consider a physical 1d quantum system, for
the following reason. A massless free theory is not physically
meaningful. The infrared divergences impose the introduc-
tion of interaction counterterms of all orders in perturbation
theory over the introduced coupling constant. The field
renormalization finally results in the physical field defined as
the exponential of the original Gaussian field ¢ (the vertex
operator). Thus in a physically meaningful 1d system, inter-
action terms must always be present and the correlation func-
tion is given by the expectation values of vertex operators
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(1490199 for an appropriate value of the constant g.
This can be evaluated readily using the well-known property
of Gaussian integrals

(1190 gmia )y = o=a*[$) = SN2 _ p=a’[C0)-Cla=x")]
(37)
where C(x—x")=(d(x)d(x")) is the free propagator we have
already found. From Eq. (15) we obtain

Mo if >0t

(1490 g=ig$r)y _ (38)

e mor’8 if < 2t

Thus the linearly increasing time dependence of C(r,¢) leads
to an exponentially decaying correlation function outside of
the horizon and a static form inside the horizon. Therefore
thermalization also occurs in 1d systems. This has been
shown to be the case for any massive to massless quench on
a 1d bosonic system, using the mapping to the slab and the
powerful methods of conformal field theory.*>36

V. ANHARMONIC COUPLED OSCILLATORS
(INTERACTING FIELD THEORY) IN SELF-CONSISTENT
APPROXIMATION

Let us now consider a system of anharmonic coupled os-
cillators. The simplest form of a Hamiltonian describing such
a system is

1 1 1 1
H:E,: 5772+5(V¢)2+5m2d)2+5)\¢4. (39)

In the continuum limit this corresponds to the simplest form
of an interacting quantum field theory, the ¢* model. At ¢
=0 we instantaneously change the mass from m, to m and at
the same time the coupling constant from A\, to \. As before,
we assume that initially the system lies in the ground state of
the Hamiltonian before the quench.

Such a model is nonintegrable and can be solved only
approximately. In this paper we will focus solely on the
Hartree-Fock or self-consistent approximation. Roughly
speaking in this approach we assume that the quartic inter-
actions can be approximated by a “mean field” quadratic
term with a parameter that should be calculated self-
consistently. More specifically the ¢* interaction term of the
Hamiltonian can be substituted as follows:?’

¢t — = 3(¢”) +6(¢") ",

where we have taken into account that (¢)=0 and the nu-
merical factors are derived by Wick’s theorem as the number
of combinations of operator contractions.

Such a substitution is justified in the large-N limit of the
linear o model, which is a variant of the ¢4 model where the
field ¢ has N components

(40)

a1 1 1
H=2 2 o+ (Vo) + om’ gl + M) (41)

=1 r

In the limit N — o with AN kept fixed, the Hartree-Fock ap-
proximation becomes exact.
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Just by staring at Eq. (40) we notice that the second term
corresponds to a mass term but with a “mass” that has to be
determined from the two-point correlation function. The first
term is just a number and does not affect the equations of
motion but, as shown in Appendix A, ensures the conserva-
tion of the total energy. Therefore we can define an effective
mass meg according to

A
mgﬁ- =m’>+ E% (qﬁi) (42)

and since the right-hand side also depends on mg, this is, in
fact, a self-consistency equation for m;. Note that the effec-
tive mass should correspond to the pole of the correlation
function on the imaginary axis in the complex k plane, which
is what is physically measurable as the mass of the particles
of the system. As a result of this approximation, our initial
nonintegrable problem has been effectively reduced to an
integrable and in fact free one, subject to the self-consistency
equation. In our out-of-equilibrium case we should keep in
mind that the effective mass will be time dependent.

We will use two slightly different methods in applying
this approach. The first one is a perturbative method. After
introducing the Schwinger-Keldysh method which is suitable
for out-of-equilibrium problems, we soon realize that the
usual perturbative expansion does not converge and a resum-
mation of Feynman diagrams using the Dyson equation is
needed. This leads us to a simple ansatz for the asymptotic
form of the two-point correlation function at large times. The
second method emphasizes on the time evolution of the sys-
tem and is based on a direct integration of the equations of
motion in their, simplified by the self-consistent approxima-
tion, version. In order to solve these equations we employ an
approximate analytical and an exact numerical method. The
results of both calculations are in agreement with each other
and additionally they verify our earlier ansatz.

Before we start, it is worth to remind ourselves of the
large N results for the ground state of our system, since in
order to proceed to the out-of-equilibrium problem we will
need to know more about the initial properties of the system.
This will also introduce us to a discussion of the renormal-
ization procedure and its application to the present problem.

A. Divergences and renormalization

The initial two-point correlation function of our system in
the large-N limit is simply that of a free system with a mass
equal to its effective value

A
migo=md+ 302 (D). (43)
k

The sum in the right-hand side of Eq. (43) represents the
fluctuations of the field. In the continuum limit this corre-
sponds to the integral

f d% 1 (44)

Q22+ m2,

which exhibits ultraviolet (UV) divergences in all dimen-
sions. In 1d and 2d these can be absorbed completely by a
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mass renormalization while in 3d an additional coupling-
constant renormalization is required.

The mass renormalization amounts to allowing the bare
mass myg to be divergent so as to compensate the divergent
integral. The (finite) renormalized mass is defined by méR
=mg+ 6m}, where the mass counterterm my is

No [ d% 1

omd=—" — (45)
2 ) emiaiZeml,
The effective mass in terms of mgy is then
Mo = Moy + » o ( : B 1 )
¢ 2) e\ oNiR+miy, 2V +ml,
(46)

which is finite in 1d and 2d.

In 3d there is still a logarithmic UV divergence in Eq.
(46) which can be absorbed by a coupling-constant renor-
malization. A suitable renormalization counterterm can be
determined by studying the four-point correlation function
and turns out to be of the form

Sne f d’k 1 47)
) @mR8(R+mip)Y

The resulting renormalized coupling constant A satisfies

Nor
Ng= — R 48
0= T nggdng (48)
and replacing in Eq. (46) we obtain
Nog [ 4Pk ( 1 1
2 2 OR
Mo =Mop+ — -
OTTORT 2 ) ea\ oV e mey 2Nk +

4k + mg)¥?

which is indeed finite. Note that in all dimensions the solu-
tion to the above equations is

Meg; o = MoR, (50)

i.e., the renormalized mass is identical to the effective mass.
In what follows we should keep in mind the well-known
renormalization group result that in 3d the critical point of
this model corresponds to zero coupling constant, i.e., in the
continuum limit the macroscopic behavior of the theory is
effectively free. Therefore interactions are not physically
meaningful in the continuum limit. In physical systems,
however, the existence of a finite lattice spacing that induces
a natural UV cutoff renders all momentum integrals finite
and there is not such a restriction.

After the quench, the change in the mass and the coupling
constant result in a change in the corresponding counterterms
as well. This is required, otherwise new divergences in the
equation for the effective mass are inevitably born. On the
other hand, this should not be regarded as a failure of renor-
malization theory as the latter does not have to apply to
expectation values taken in states which are not obtained by
renormalized operators acting on the vacuum and our initial
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state is not such. In absence of a definite rule for the selec-
tion of the renormalization counterterms like the one for the
ground state or thermal expectation values, several choices
can be applied.?® In the present work we will be using the
ground-state counterterms of the theory after the quench.

Since the field fluctuations right after the quench are ex-
actly the same as before it, the equation for the effective
mass right after the quench is

A 4 1 (51)
(277') 2\k2+m0R

or introducing the mass renormalization

2 (0% = i 4 > f dk ( 1 1 )
m - 5
et k (2 7T)d 2y + méR 2\'/k2 + m12e

(52)

where my, is the renormalized mass after the quench and

AMOd% 1
om? =~ —— (53)
(277) 2\k2+mR
is the corresponding mass counterterm. As before the last

expression is convergent in 1d and 2d, but not in 3d. If we
use a coupling-constant renormalization counterterm

O\ = J ok ! (54)
(277_)3 m12€)3/2
we find
e [ dk 1 1
mgff(OJr) = m12e + 3( (2. 2 A2 2
2 QmP\oNkE+mi, 2K+ mp,

- -

402+ m2)”

which is only convergent in the trivial case m.;(0")=mgg
where there is no jump in the effective mass, i.e., no quench
at all. Recalling our previous remark, we realize that this
problem is due to the fact that the presence of interactions
does not make sense in the continuum limit. In lattice sys-
tems, however, there is not such a problem and the practical
meaning of the above is simply that m.(0*) is very large. In
the following we will therefore keep a large UV cutoff A in
all expressions for the 3d case and investigate the depen-
dence of our results on this.

An interesting first observatlon is that as defined by Eq.
(52) the initial mass-square m2(0*) can be negative. Indeed
for my<m, m%(0%) is always positive, but for my>m the
mass shift induced by the interactions is negative and if \ is
large enough then m>(0*) <0. In particular if m=0 the latter
is always true. From a physical point of view this negativity
means that the quench can effectively drag the system into an
unstable initial state like that of a double-well (or generally
“mexican hat”) potential. We will come back to this aspect of
the problem later.

The integration in Eq. (52) can be done analytically. Ex-
pressing the integral in dimensionless form we have
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A Oy
2 2m)?

ma(0%) =mp+ m " hy(mgimg), (56)

where (), is the total solid angle in d dimensions (£,
=2, O,=2m, Q3=4m) and the function h,(s) is defined as

A 1 1
) = fo kd_ldk( 2WIR+1 20+ s2) 57
and can be easily shown to be
(log s)/2 if d=1,
hy(s)=4(s=1)/2 if d=2, (58)

(s>~ 1)(log A)/4 if d=3.

B. Perturbative approach

In order to study the evolution of the effective mass for
t>0 we have to calculate the two-point correlation function
and the usual way to do this is to use perturbation theory.
The two-point correlation function is

é(r’tl’IZ) = <\P0|¢(O’t1)¢(r7t2)|\p0>’ (59)

where, as before, is the ground state of the initial
Hamiltonian. For simplicity let us first assume that \;=0,
i.e., that there is no interaction before the quench so that |W,)
is the ground state of a free Hamiltonian. At this point we
encounter an important difference with the usual quantum
field theory (QFT) methods: at zero temperature the starting
point of such a calculation is usually the following formula:

<O|T{ 1(0,1)) pi(r, fz)eXPl— if dtH,-m(t):| } 0)

—00

<o|7{ pl ; f - drH,-n,<t>] }|o>

But in our case this expression is inappropriate since it relies
on the condition that |0) is the ground state of the free part of
the Hamiltonian and the interactions are switched on and off
adiabatically. In a quantum quench this is not valid because
|W,) is the ground state of a different Hamiltonian and the
changes are done instantaneously. Thus we have to trace
back to the origin of Eq. (60) which follows from the inter-
action picture formalism

. (60)

<\I’0|T{ ¢i(0’t1)¢i(r7t2)exp|:_ if deim(f)} }|q’0>,
K

(61)

where ¢ is integrated over a contour K that starts from some
initial time #,, passes through #; and 7, where the interaction
picture field operators ¢; are placed, extends to some final
time 7, and then goes back to #; so that times on the second
half of the contour are considered to be later than those on
the first half (Fig. 4). This is the well-known Schwinger-
Keldysh method for nonequilibrium quantum systems3*-*+
and is applicable to any choice of initial state.

If |Wy)=|0) and the interaction is switched on and off
adiabatically then we can extend 7;— —o and #,— +°°. In this
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t=0 t, t
K

9

FIG. 4. The Schwinger-Keldysh contour for a quantum
quench.

case, from the adiabatic theorem, the action of exp[
+i[*7dtH,,(1)] (i.e., the evolution operator along the second
half of the contour) on | W) yields just a multiplicative con-
stant and Eq. (61) reduces to Eq. (60). In the present problem
we need to use the original expression (61) instead. The ini-
tial time can be set to be #;,=0, when the interaction is
switched on. However the same choice can be used even in
the general case when \y,#0, i.e., when the interaction is
present before the quench, since as explained above, in our
approximation the initial state is still that of a free theory but
with the mass replaced by its effective value.

It is worth to remark that an alternative way of deriving
the Keldysh contour is by using the slab construction men-
tioned earlier. In this approach one would have to integrate in
imaginary time from —L/2 to +L/2, i.e., from one to the
other boundary of the slab, then analytically continue the
arguments of the operators from imaginary to real times as in
7—it and finally take the limit L—0 thus recovering Eq.
(61).

We can now expand Eq. (61) in powers of \. According to
the above, the zeroth-order  perturbative term
(V| :(0,1,) i(r,1,)| W) is exactly the quench propagator
Eq. (13) with the masses m and m replaced by their renor-
malized values.

The first-order correction C\V(z,,1,:k) corresponds to the
single loop Feynman diagram (Fig. 5). After applying Wick’s
theorem we find that C(l)(tl ,1y;k) reads

dk’
(2m)

loop-momentum

A
EJ dt’C(tl,t';k)C(tz,t';k)f ZC@' 1" k'). (62)
K

The explicit form of the

[d%C(t,t:k) is

2 2 2
- my—m 1
f ddk( (@0 5 ) - 5——Ccos 2wyt + —) (63)
4wkw0k 4wkw0k 2wk

integral

but we also have to take into account the mass renormaliza-
tion, which amounts to subtracting the UV divergent Feyn-
man part and substituting the bare mass m by the renormal-
ized mpg

FIG. 5. First-order Feynman diagram.
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1
Zwk’mR ’

(64)

f dC(t,t;k,m) = J ddk[C(t,t;k,mR)—

For brevity we redefine m and m, to be the renormalized
masses mp and mgp in all subsequent equations. Then Eq.
(63) can be written explicitly as

2 2 2

- my—m

f ddk((‘"‘)k _ w)” 0™ cos 2wkt>. (65)
4wkw0k 4wkw0k

From the terms that remain in Eq. (65), the first one which is
the time-independent part is always convergent since it de-
cays like k> for large k. On the other hand, the second term
which is the time-dependent part decays like k= cos 2awyt,
which means that it converges in 1d and 2d, while in 3d it is
divergent only at t=0. We also note that Eq. (65) does not
suffer from infrared divergences in the massless case m=0
except in 1d.

Having analyzed the convergence of the loop integral, let
us now calculate it. If we assume that m # 0, then the time-
independent part has been calculated exactly already in Sec.
III D: it is equal (up to a numerical factor involving the total
solid angle in d dimensions) to mg'l fa(m/mg), where f,(s) is
given in Table I. On the other hand we recall that the time-
dependent part has been shown to decrease with time. More
specifically using the stationary-phase method we find that
for large times it decays like

- mé)m‘i_2 cos(2mt + ¢)

)d/Z : (66)

(m

m (mt

However for small times, this same time-dependent part can
be important (or even divergent as we saw that happens in
3d).

Thus we are naturally led to the question whether it is safe
or not to completely ignore the time-dependent part of the
loop integral in calculating C!" for large times. If this is
correct, then the effect of the loop diagram for large times is
simply a mass shift equal to the time-independent part (recall
that a mass-renormalization counterterm induces a similar
shift in the mass, but an infinite one). Higher orders in per-
turbation theory correspond to more loops and therefore one
needs to employ a resummation of all orders in order to
compute the actual mass shift. Such a resummation can lead
to a nonperturbative dependence of the mass shift and the
correlation function on the coupling constant. Indeed if we
calculate C'V from Eq. (62) assuming that the loop integral is
constant, then we find that the first-order correction increases
linearly with time, i.e., it will eventually become larger than
the zeroth-order term and therefore the perturbative series
does not converge. The required resummation can be done
using the Dyson equation as described in the next section.

1. Resummation using the Dyson equation

As well known the Dyson equation is an integral equation
satisfied by the two-point correlation function of an interact-
ing theory that expresses the fact that the latter can be con-
structed from the propagator in a recursive fashion, using a
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FIG. 6. Diagrammatic representation of the Dyson equation in
the large-N limit.

number of “skeleton” diagrams as building blocks. In our
problem and in the mixed representation the Dyson equation
can be written in the form

6(t17t2;k)=c(t17t2;k)
+f dt'f dr'C(ty,t" k)3t 1" k) C(t 103k,
K K

(67)

where we denote the full correlation function by Cand 3 is
the self-energy insertion, i.e., a two-leg insertion also con-
structed recursively by the skeleton diagrams.

In the large-N limit the loop diagram is the only skeleton
diagram and therefore the self-energy is simply a loop of the
full correlation function. The Dyson equation then takes the
simplified form (Fig. 6)

C(t),123k) = C(1y,133k) + f dt' C(ty,t ;)3 )C(t' 1153 k),
K

(68)

where

N d% | < 1

(¢ =—f C(' 1"k - — 69
()= 2 ( ) Yo (69)
taking into account the mass renormalization. Notice that
comparing with Eq. (42) we realize that 2(¢) is nothing but

the shift in the mass square

(1) = msz(t) —m?. (70)

As we see the Dyson equation contains C explicitly in the
right-hand side but also implicitly in the definition of .
Thus it is difficult to solve, in general. In many cases it is
useful as a check of validity for an ansatz: we assume a

particular form for C, substitute in the Dyson equation and
check the consistency or determine any free parameters. This
is how we are going to use it in our problem.

Let us therefore construct an ansatz based on the hypoth-
esis that the time dependence of the loop be negligible. Then
the same can be assumed for the self-energy since this is
nothing but a dressed loop, i.e., the sum of all “cactus dia-
grams.” This would mean that 3(7) can be replaced by its
large time-stationary value 3*=lim,_, .., () or, according to
Eq. (70), that the effective mass itself can be considered as
time independent and equal to its large time-stationary value
m*=lim,_, ., m.(f). In other words we suppose that the ef-
fective mass simply jumps at the time of the quench from m
to m™ in which case the correlation function should simply be
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equal to the quench propagator for a quench from my to m".
Note that our assumption is twofold: first we assume that m.g
tends to a stationary value and second that this happens fast
enough to approximate its evolution by a jump.

According to the above, our ansatz is that the two-point

correlation function E(tl,tz;k) is approximately the same as
the propagator itself but with m replaced by an asymptotic
effective mass m”*

6(tlst2;k;m0’m) -~ C(tl’tz;k;m()sm*)' (71)

We expect this relation to be asymptotically exact for large
times, when any memory of the initial evolution of the ef-
fective mass will have been lost.

Now that we have an ansatz for the correlation function
we can use the Dyson equation to check its validity and
determine the value of the free parameter m*. By substituting
Eq. (71) into Egs. (68) and (69) and replacing 2.(z) by %7, we
find that the Dyson equation is satisfied exactly when m"
satisfies the self-consistency equation

N[ d% 1
LV 2= *:_ C*k, , *__:|,
me—m=3 5 (277_)4[ (k;mgy,m") Yo
(72)

where C*(k;mg,m) is the stationary part of the propagator.
One can also check whether the remainder of the large
time asymptotic form of the Dyson equation

fdt’C(tl,t’;k;mo,m)[E(t’)—E*JC(I’,Iz;k;mo,m*)
K

(73)

with

N d% 1
S == [C(t’,t’;k;mo,m*)—z— (74)

2) 2m)? Wy

tends to zero as supposed to. This is, however, a cuambersome
calculation and will not be presented. We will later show an
alternative way to study the time evolution and verify our
ansatz, but for the moment let us focus on the self-
consistency Eq. (72) and investigate its solutions.

2. Self-consistent calculation of the mass shift

Written explicitly the self-consistency Eq. (72) is

m?=m?+ =

2) 2m)?

N[ d% ((ka—wZ)2 wk—“i}i)’ (75)

4a)0kcuz2 2wy
where ;= \k?+m*.

Once again some comments about the 3d case are due as
Eq. (75) contains a logarithmically divergent integral. There-
fore an UV cutoff A is assumed and the solutions m™ will
depend on it. As can be verified, however, the small \ be-
havior of m" is not affected by A. By the way the A coun-
terterm Eq. (54) would successfully remove the current di-
vergence yielding the finite equation
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FIG. 7. Solutions of the self-consistency Eq. (75) in 1d. The plots show the effective mass m" as a function of the coupling constant \
for several values of m in units of my=1. Notice that as m— 0 the effective mass tends logarithmically to zero for all \.

- w; m*z—mz)

m-=m"+ —_

%2 2 )\R d3k ((ka_wZ)Z
2 ) 2n)?

4w0sz2 2wy 4w,3(
(76)

but according to the discussion in Sec. V A, this is supposed
to be correct only for A — 0 and therefore provides no more
information than Eq. (75) with a cutoff.

Going back to the general case, if we make the momen-
tum integrals dimensionless then the self-consistency equa-
tion can be written as

A Q m* m
2 _ 0 N 2H [ d-1 ( )+ *d—lh( )}’
me=m 2 (2m)? mo Ja mg n N\
(77)

where f,(s) and h,(s) are the previously defined functions in
Egs. (31) and (57).

The above equations can be solved numerically or even
analytically in several asymptotic limits like for A—0 or
m—0. Figures 7-9 show plots of the solutions m™ as a func-
tion of N for several values of m in 1d, 2d, and 3d while Fig.
10 shows m™ as a function of m for A—o° in 1d and 2d. A
first important remark is that for m # 0 and small \ the first-
order correction m*—m is linear in N while for m=0 this is

m*
1.0 m=1
08
06
04
02 /// —.
0 2 4 6 8 \ 10

m < 1

not true. Instead m™ depends on A in a nonperturbative way
in this case. The first-order corrections in N for m=0 are
summarized below: (1) for d=1

m“=0 for all N\. (78)

In fact it is more correct to talk about the limit m—0,
since m can never reach zero in 1d. In this limit, m* follows
m to zero like

. my/2
" D log(mym) + 1 — 16mminm’ (79)
(2) For d=2
m' = i 1/ };—riolog(mo/)\). (80)
(3) For d=3
m* = 4;:%)\1/2 (81)
independent of the cutoff.
m*
10T T
1 SRR
o1
4 -
2
°0 200 400 600 800 1000
m > 1 A

FIG. 8. The same plot in 2d. Notice that, in contrast to the 1d case, as m— 0 the effective mass tends to a nonzero value for all A > 0.
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FIG. 9. The same plot in 3d. The curves show a weak (but
increasing for increasing A) dependence on the cutoff A. The
dashed lines correspond to A=10* while the full ones to A=10".

On the other hand for large N\ and m, m" increases like
m*~m?/2myg in 1d, m* ~4m/ m in 2d while in 3d the large \
result is cutoff dependent. In addition, in 2d and for m=0
and N — o we find m*— 0.24954...my,.

Of particular interest are the 2d results for m=0. The fact
that m™ # 0 means that from the critical evolution in the pres-
ence of interactions, there always emerges a finite effective
mass which lets the system become stationary, in contrast to
the free case.

C. Time evolution

We saw in Sec. V A that the initial value of the effective-
mass square m2(0*) can be negative, while our ansatz sug-
gests that its asymptotic final value is always positive. It is
therefore worthwhile to investigate the time evolution of the
effective mass in more detail. Although this can be done in
the context of perturbation theory as in the previous section,
an alternative and rather simpler way is by integrating the
equations of motion for the field operator ¢. Since the exact
equations are nonlinear, even if we were able to solve them
the solution would depend on the initial operators
#(0), &(0) in a nonlinear way, thus preventing a direct ap-
plication of the initial conditions in Eq. (7) as done in Sec. IL

’ITI,*
| d=1
1
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FIG. 10. (Color online) Effective mass as a function of m for
A — in 1d and 2d in units of my=1. The dashed straight lines are
for reference. Notice that as m—0, m*— 0 logarithmically in 1d,
while in 2d m*— 0.24954.
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Fortunately in the Hartree-Fock approximation this obstacle
can be circumvented since the ¢* interaction term of the
Hamiltonian is substituted by a quadratic “mean field” term
according to Eq. (40). As explained in Sec. V, this substitu-
tion reduces the interacting into a free problem with a time-
dependent effective mass given by

mgff(t) =m’+ %E ((d’i(f» - %) (82)
k Wy

thus yielding a linear equation of motion.

Even after this simplification, however, the problem is not
trivial. In the following two sections we will first apply an
approximate method that leads to an analytical solution for
small values of the coupling constant and later derive exact
equations for the evolution of the correlation function which
we will integrate numerically.

1. Quasiadiabatic self-consistent approximation

A common approximation that could provide a com-
pletely analytical treatment is the adiabatic approximation
which is based on the assumption that m(z) varies slowly in
comparison with the fast oscillations that characterize the
solution.*? This is not a reasonable assumption though, since
it is the solution itself that determines the time dependence
of mg(r). However as we show below, one can establish an
alternative argument leading to the same approximate solu-
tion. The latter becomes equivalent to our earlier ansatz Eq.
(71) for small X and provides a first idea of the qualitative
behavior of the solution.

Since our problem is now free, it can once again be de-
composed into a set of independent harmonic oscillators. Of
course the time dependence of the frequency of each oscil-
lator involves a summation over the whole set of them, but
for the moment it suffices to consider a single quantum har-
monic oscillator with an arbitrary time-dependent frequency
w(t). The Hamiltonian is

H=%772+%w2(1)¢2. (83)

The equation of motion for the field operator evolving under
w(?) is

b+’ (t)p=0. (84)

If the frequency varies with time very slowly (adiabatically)
then @/w’<1 and as well known the solution is given by

[
0

1 M ' ’ ’
+ W(O)mﬂﬂ[ﬁ) w(t")dt :| (85)

A detailed derivation of the above equation in the quantum
case can be found in Appendix B.

Although, as we said, the adiabaticity condition does not
apply to our problem because w(f) may exhibit oscillations
with the same frequency as the solution, the condition
o/ w?<1 is also valid when the amplitude of the frequency
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oscillations is sufficiently small in comparison with the av-
erage value. This happens when the coupling constant A is
sufficiently small so that from Eq. (82) m(f)=m. In this
quasiadiabatic approximation we can still use the last expres-
sion (85) as the solution to our problem.

Having found the time evolution of ¢ we can use the
initial conditions to derive the correlation function {¢*(z))
which is all we need in order to find m(z). Recall that from
Eq. (7) we have (¢(0)m(0)+m(0)¢(0))=0 and (p*(0))
=1/2w, {(7(0))=wy/2. By a direct calculation

*(0) + w} *(0) - w? J’

2 _ ’ ’

(¢ (t)>_4w0w(t)w(0) * T w(0) " 2 . w(t")dt' |.
(86)

Now going back to the interacting field theory model, we
conclude that the equal time-correlation function for each
momentum mode ((ﬁ(t)) is given by Eq. (86) with w(z)
corresponding to the time-dependent effective mass Eq. (82),
ie., wi(t)=k2+m§ff(t). Therefore the self-consistency equa-
tion for mg(z) is

N w>(0) + w?
y=ni A3 { A0 ok
2770 | 4opw(t) i (0)

2 2 ‘
w(0) — wy, f o 1
’ 4oy (1) wi(0) cos[Z 0 ol t)dt ] - zwk}.
(87)

This equation enables us to extract physical information
about the evolution of the system through its only parameter
meg(f). A first observation is that m.(f) depends on an aver-
age value over all previous times. The initial value of the
effective mass mZ(0*) seems to be crucial for the time evo-
lution. If m2(0%)>0 and N\ —0 then mg(r) exhibits weak
oscillations and the adiabaticity condition is satisfied for all
times. At large times the argument of the cosine increases
like 2@y, where @, is the time average of wy(r). Therefore
we can apply the stationary-phase method to show that the
oscillations decay in time and m(t) indeed tends to a sta-
tionary value given by

A 0*(0) + @] 1
m;i=m2+_2 (M__
270 oy, (0) 2wy

). (88)

If, however, mgff(0+)<0, the small k& modes exhibit, at
least at short times, exponential instead of oscillating evolu-
tion and the adiabaticity condition is no longer satisfied. The
latter is also true in the marginal case mZ(0*)=0.

Although Eq. (88) is not the same as the corresponding
equation of our ansatz Eq. (75), they are in perfect agreement
for N — 0 where the quasiadiabatic approximation is correct.
In the next section we will see that it is possible to construct
a system of differential equations that describe the time evo-
lution of m(z) exactly, thus allowing us to investigate the
large \ regime.

2. Exact time-evolution equations and numerical solution

Let us go back to the problem of a quantum harmonic
oscillator with a time-dependent frequency, described by
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Hamiltonian (83) and the equations of motions [Eq. (84)]
and start from scratch. Inspired by the adiabatic solution in
Eq. (85), we assume a solution of the form?®

¢(1) ~ Lexpl—if Q(t’)dt’], (89)

V20Q(1) 0

where ()(¢) is a suitable function that we wish to determine.
Substituting into Eq. (84) we find that Eq. (89) is the exact
solution if )(7) satisfies the equation

.. .\ 2
£ 310 1l o
20 4(9) + Q7 = 0 (1). (90)

By comparison with the constant frequency case we can find
that the appropriate initial conditions for {)(z) are
Q(0) = w(0), Q(0)=0. (91)
Notice that if the derivatives of w are much smaller than
itself, we reproduce the quasiadiabatic limit where (¢)

=w(?) to first order.
Taking into account the general initial conditions for

¢(0), 7(0) we have
00 [0
Q0) COS[L Q(t')dt }

1 . ' ’ ’
O)WSIH{JO Q(t")dt i| (92)

from which, using once again the initial conditions in Eq.
(7), we find that the equal time-correlation function is

1 s [w(0) — wy]?
20(1) 2w(0)w,
wZ(O) - wé ft ’ ’
+ —Zw(O)wo cosl2 . Q@dt" | ¢ (93)

In fact the only difference with Eq. (86) is that w(r) has been
substituted with (¢). The overall result is that instead of Eq.
(84) one has to solve another differential Eq. (90). The ad-
vantage is that the former is an operator equation while the
latter is an ordinary equation and it is easier to deal with real-
or complex-valued functions than operators, especially since
we will have to solve it numerically.

In our interacting problem, the equal time-correlation
function for each momentum mode (¢;(¢)) will be given as
before by Eq. (93) where (),(r) is also a function of k. Note
that () itself does not have to be of the form [k?
+M?(£)]V? but for large k it is asymptotically equal to w,(z),
which ensures that nothing has changed as long as the con-
vergence of the integral in Eq. (82) is concerned.

The system of Egs. (82), (90), and (93) completely deter-
mine the time evolution of the system. Although very diffi-
cult to deal with analytically, it can be easily integrated nu-
merically by discretizing the (k,7) space and iteratively

¢(1) = $(0)

(1) =
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FIG. 11. (Color online) Typical plots of the time evolution of the
effective mass as obtained numerically both in 1d. (a) The first plot
corresponds to parameter values (mg,m,\)=(1,2,10) that yield a
positive value for msz(OJ'). The effective mass exhibits oscillations
of decaying amplitude ~7~> about an asymptotic value that is
accurately predicted by our ansatz m*. (b) The second plot corre-
sponds to (mg,m,\)=(1,0.5,10) that yield a negative value for
msz(OJ'). The initial exponential growth brings mgff to positive val-
ues and as before mg tends to the value m* found with our ansatz.
The 2d and 3d cases are similar.

applying the following loop: (1) calculate )(r) for each k
from Eq. (90), (2) calculate <¢,f(z)> for each k from Eq. (93),
(3) calculate mgff(t) from the self-consistency Eq. (82), and
(4) move one step forward in time t— t+di.

Figure 11 shows typical plots of the time evolution of the
effective mass. For m2(0*) >0 we see that the latter exhibits
decaying oscillations around an asymptotic stationary value.
We observe that this is the case not only for small values of
N\ as we proved using the quasiadiabatic approximation but
also for large ones. Moreover we find that even when
m2(0%) <0 in which case the quasiadiabatic approximation
fails, mgﬁ»(t) increases quickly and soon becomes positive to
follow an oscillating evolution similar to the previously de-
scribed one. The reason is that the exponential growth of the
momentum modes with k> <—mZ(7) leads to a fast increase
in mgff(t) that brings it to positive values, ceasing the expo-
nential growth and leaving only oscillating modes.?’~%°

The asymptotic value m™ as numerically estimated from
the above method is systematically compared with that de-
rived by our ansatz in the next section. It is remarkable that
they are in perfect agreement for all choices of values for the
parameters we studied.
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FIG. 12. (Color online) Comparison of numerical data (crosses)
with our ansatz (lines) for m=0. The plots are Ey;:mgff(w)—m2 asa
function of \ in units my=1. The red line corresponds to 2d and the
blue one to 3d with A=100.

3. Comparison of the quasiadiabatic and numerical results with
our ansatz

Let us recall our earlier ansatz for the correlation function

6‘(k,t) stating that the latter is the same, at large times, as
that for a free theory with m replaced by the final effective
value m*=mg(t— 0) which we find self-consistently, i.e.,

1 W, - wy)? 0 — o
Cang(k,1) ~ F{l + G + = %cos2wyi) |.

o8 2waOk ZwaOk
(94)

On the other hand the quasiadiabatic approximation gives

[w(0) — wyi ]

Cqalk,1) = 2a(1) 2w (0) woy
2 2 !
N %COS[ZL wk(t’)dt’] (95)

while the exact evolution in the Hartree-Fock approximation
of the problem, presented in the last section, is

[w(0) — wp ]
20,(0) ey

2 2 t
Mcole J Qk(t’)dt’} . (96)
0

+
2w(0) ey

1
C..(k,t)= 1
ex(k, 1) 20,00 +

The last two expressions differ only in that {),(z) is replaced
by w(t) in Cg,(k,7). An important difference between both
last two expressions and C, is that in the latter w; replaces
w;(0). Furthermore although the argument of the cosine in
Cga should tend to 2wt as in Cyy, for large ¢, this is not
necessary for C,,. Thus C,,, is not apparently consistent with
either C,, or C,,, except for A— 0 where all of them are in
agreement.

Lacking an analytical argument to verify our ansatz, we
rely on the numerical evaluation of the exact expression and
determination of the corresponding asymptotic value of m.g.
Figures 12 and 13 show plots of the shift 3, =m2(e) —m? as

qa
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FIG. 13. (Color online) Comparison of numerical data (crosses)
with our ansatz (solid lines) and quasiadiabatic predictions (dashed
lines) for several values of m (again in units my=1). The red lines
correspond to 2d and m=2, the green ones to 2d and m=5 and the
blue ones to 1d and m=2. It is clear that the numerics agree with
our ansatz rather than the quasiadiabatic approximation which is
only good for small values of A.

a function of N\ for various choices of the parameter values
and dimensionality, always in units my=1. The plots are
based on the predictions of our ansatz, of the quasiadiabatic
approximation and estimates drawn from numerical integra-
tion of the exact equations. By comparison we observe that
the numerical data agree with our ansatz very well even for
large values of \. In the contrary they do not agree with the
quasiadiabatic results, apart from first order in N. We con-
clude that, although our ansatz is not manifestly consistent in
form with the exact solution, it, however, reproduces the ex-
act results very successfully.

VI. CONCLUSIONS

We studied the problem of a quantum quench in which we
simultaneously change the mass and the coupling constant of
an interacting system. We restrict ourselves to the time-
dependent Hartree-Fock approximation and make the plau-
sible hypothesis that for large times the two-point correlation
function is the same as the propagator but with a mass shift.
We verify the self-consistency of our ansatz and derive the
asymptotic effective mass as a function of m and m, and A\
which is shown to be correct by numerics. We point out that
if mg(t) approaches its final value mgu(o0) sufficiently
quickly then in the Hartree-Fock approximation the compos-
ite quench of the mass and the coupling constant is essen-
tially nothing but a simple quench of the mass from m, di-
rectly to mgp(). In this case our ansatz would be justified
and its generic success is probably an indication that such a
fast “relaxation” process is indeed what happens.

Our findings show that effective thermalization, one of the
highlights of quantum quenches in free and 1d conformal
systems, is also possible in interacting systems such as the
present model. Furthermore it is enhanced in some sense by
the presence of interactions, since it occurs under more gen-
eral conditions than in free systems (that is even in 2d mass-
less systems). This is because of the shift in the effective
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FIG. 14. The sunset diagram.

mass of the system induced by the interactions. As this is
their only effect in our approximation, the effective tempera-
ture is still given by the same relation as in a free model but
with m replaced by m”, thus depending on the coupling con-
stant. In particular, the effective temperature is still momen-
tum dependent as in the free case, but this should not be
surprising: as explained in the introduction and the main text,
in diagrammatic perturbation theory the Hartree-Fock ap-
proximation amounts to keeping only cactus diagrams, i.e.,
Feynman diagrams that can be constructed solely by loops
and ignores the effect of collisions between quasiparticles
with different momenta that can induce a mixing of the dif-
ferent modes. The next-order correction would be to take
into account the “sunset” diagram shown in Fig. 14.

We finally mention that, except for the stationary behav-
ior, also the other qualitative features of the two-point corre-
lation function that we observed in Sec. III A for the mass
quench in the free case are general and present also in inter-
acting models and for quenches of the interaction strength.
This comment refers not only to the horizon effect for which
it is obvious but also to the characteristic oscillations,'® ei-
ther decaying or not, and is valid at least for integrable mod-
els (or even for sufficiently small deviations from integrabil-
ity) since, as the present work suggests, the first effect to the
quench is only a shift of the quasiparticle masses (equiva-
lently of the poles of the scattering matrix).
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APPENDIX A: A CONSERVED QUANTITY

In the Hartree-Fock approximation the effective fre-
quency of each momentum mode is time dependent so that
the time derivative of the corresponding single-mode
“Hamiltonian” is not zero. Indeed

d

a [d’kv %k + w/%(f) il

d 1., 1 1
0= {;ﬁi + gw,%u)gﬁi] =3

1d

1d
+ Ea[wi(f)]@% = EE[wi([)](bi’ (AD)

where in the last step we used the equations of motion ¢
2
+(.l)k(t) ¢k= 0.
However we can still construct a conserved quantity.
From the self-consistency Eq. (82) we see that
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—[wk(z)] —c‘:(r>, (A2)
where
C(0) = 2 (. (). (A3)
=
Therefore
NG AC (A4)
dr ©7 7 4 k

and if we take the expectation value on the initial states and
sum over all momenta we conclude that

%(tt) = _E (h(2)) = —)\C(I)C(t) = —)\ [Cz(t 1.
(AS)
i.e., the following quantity:
h(1) - é)\Cz(t) (A6)

is conserved. As a demonstration of internal consistency, the
last expression is precisely the Hartree-Fock form of Hamil-
tonian (39) according to the substitution Eq. (40).

APPENDIX B: THE ADIABATIC APPROXIMATION

We consider the quantum harmonic oscillator with time-
dependent frequency, described by Hamiltonian (83). The
latter can be diagonalized in terms of the instantaneous cre-
ation and annihilation operators a'(f) and a(r) defined by*

a() = ?(miﬁ) (B1)

and its Hermitian conjugate. Notice that a(z) in the above
relation depends on time only through w(z). The time evolu-
tion due to the dynamics of the problem is obtained from the
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Heisenberg equations of motion which in the case of opera-
tors that depend explicitly on time become

da da . o
—=i[H,a]l+ —=-iwa+—a (B2)
dt ot 2w

and its Hermitian conjugate. The last equations form a sys-
tem of linear differential equations that in matrix form looks
like

Cie &

d 2w

ol )-aol2) a0=| (®3)
— +4iw
2w

with solution

a(t) R | ()
L*m} - T“I’MA” )‘” Hm) ] (B4

where 7 denotes time ordering. If the frequency varies only
slowly (adiabatically) with time then @/w?><1 and A(f) can
be approximated by

—-io 0
A(r) = ( . ) (B5)
0 +iw
which is diagonal, so that the solution to Eq. (B3) is simply
13
a(r) =exp|:— if w(t’)dt’]a(O) (B6)
0
and its Hermitian conjugate. Note that the first-order correc-

tion due to the off-diagonal part of A(z) gives

a(t) = o-ilpw(s)ds a(0) + o-ilpw(s)ds f dt ,zw((t )) 2if8 s)ds a'(0).
0

(B7)

Keeping only the zeroth-order term, we proceed to finding
¢(t) from ¢(t)=[a( t)+aT(t)]/\2w(t) to obtain Eq. (85) in the
main text.
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